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Barcelona

adriaprior2@gmail.com

∗Corresponding author

Resum (CAT)
Un dels resultats principals de l’anàlisi factorial afirma que si el model factorial se

satisfà per a un vector aleatori X , aleshores la matriu de covariància del vector

admet una descomposició en termes de les matrius que caracteritzen el model, i

que el rećıproc també és cert sota condicions força generals. La implicació directa

es troba demostrada en moltes referències, però la prova del rećıproc sembla

dif́ıcil de trobar en els textos disponibles. La raó d’aquest article és compartir una

demostració del rećıproc concebuda per l’autor, primerament pel cas del model

factorial ortogonal, àmpliament usat en anàlisi factorial exploratòria i, en segon

lloc, per un model factorial que generalitza l’ortogonal i està pensat per a ser

utilitzat en anàlisi factorial confirmatòria.

Abstract (ENG)
One of the main results in factor analysis states that if the factor model holds for a

random vector X , then the covariance matrix of the vector admits a decomposition

in terms of the matrices that characterize the model, and that the converse is also

true under quite general conditions. The direct implication can be found proved in

many references but the proof of the converse seems difficult to find in the available

texts. The reason of this article is to share an original proof of the converse, first for

the case of the orthogonal factor model, widely used in exploratory factor analysis,

and secondly for a factor model that generalizes the orthogonal one, and which is

meant to be used in confirmatory factor analysis.

Keywords: factor analysis, ex-
ploratory factor analysis, confirmatory
factor analysis, factor model, funda-
mental theorem of factor analysis.
MSC (2010): Primary 55M25, 57P10.
Secondary 55P15, 57R19, 57N15.
Received: March 8, 2021.
Accepted: May 17, 2021.

Acknowledgement
I would like to thank the anonymous refer-

ees for carefully reading the manuscript and

for their useful corrections and suggestions.

1http://reportsascm.iec.cat Reports@SCM 6 (2021), 1–9; DOI:10.2436/20.2002.02.23.

Factor analysis:
Existence of solution to factor models

http://reportsascm.iec.cat


Existence of solution to factor models

1. Introduction

Factor analysis is a statistical theory that allows, under certain conditions, to express each variable of an
observable random vector as a linear combination of a few new variables called factors, through a stochastic
model. The so called factor model is adjusted to the observable vector, which we shall call initial vector,
using a set of observations of it.

This technique is used in different fields such as psychology, sociology, economy or political sciences,
and also in the physical sciences and biosciences. The factors may explain the initial variables in a simplified
way, and they should be of theoretical interest in the specific research setting. In fact, factor analysis is
usually applied to investigate concepts that can’t be measured directly, like intelligence, social status or
sustainable progress, by collapsing a large number of variables related to those concepts into a reduced
group of latent factors.

There exists a vast literature in factor analysis that treats the applied aspects of the technique, including
a variety of examples; see Mardia et al. ([5, pp. 255–280]) for a consistent introduction. One of the main
results in this frame says that if the factor model holds for the initial random vector, then its covariance
matrix can be decomposed in a particular way, and that the converse is also true under quite general
conditions. The direct implication is proven in many references, but the proof of the converse cannot be
easily found in the available texts, despite it is stated in several ones. The author proved this result after
unsuccessfully seeking a complete detailed proof, following a hint given in Mardia et al. [5]. The reason of
this paper is to share this proof, so that it can be accessible to anybody interested in factor analysis from
the mathematical point of view.

First, we will prove the converse for the case of the orthogonal factor model, which is commonly used
in exploratory factor analysis. Secondly, we will extend the result to a factorial model in which correlations
between factors will be allowed, being this way adequate to use in confirmatory factor analysis, we will call
this second model generalized factor model. Exploratory factor analysis is probably the most known version
of the technique, and it is used to find a factor model that fits the initial vector, whereas the confirmatory
variant is usually performed after an exploratory analysis, with the aim of fitting a specific factor model
such that some of the parameters values are predetermined in advance by the researchers.

We will name Theorem of existence of solution to the orthogonal factor model and Theorem of existence
of solution to the generalized factor model the two results, which are precisely stated and proved in
Sections 2 and 3, respectively. Both theorems are important in practice because they ensure that the factor
model is valid when the sample covariance matrix fits well to a given pattern, which describes the relations
between the initial variables and the latent unobserved factors, as well as the relations between the factors.

2. Existence of solution to the orthogonal factor
model

We begin with the orthogonal case, by defining what is a solution to the orthogonal factor model for a
random vector X .
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Definition 2.1. Let X t = (X1, ... , Xp) be a p × 1 random vector with E[X ] = 0p×1 and E[X 2] <∞1. We
say that the orthogonal factor model holds for X if there exist two random vectors f t = (f1, ... , fm) with
m < p and ut = (u1, ... , up) and a matrix Q = (qij)ij ∈ Mp×m(R), such that

X1 = q11f1 + q12f2 + · · ·+ q1mfm + u1

X2 = q21f1 + q22f2 + · · ·+ q2mfm + u2

...

Xp = qp1f1 + qp2f2 + · · ·+ qpmfm + up

(1)

and satisfying the following conditions:

(i) E[f ] = 0m×1, Cov(f ) = Im, with Im the identity matrix on Rm.

(ii) E[u] = 0p×1, Cov(u) = Ψ, with Ψ a diagonal matrix in Mp(R).

(iii) Cov(f , u) = 0m×p, where Cov(f , u) denotes the cross-covariance matrix between f and u.

In this case we say that the triplet (Q, f , u) is a solution to the orthogonal factor model for X , (f1, ... , fm) are
called the common factors of the model, (u1, ... , up) are called the specific factors, the matrix Q is called
the loadings matrix and the elements on the diagonal of Ψ are named specific variances.

The model equations system (1) can be written as X = Qf + u. In practice, X is the observed random
vector for which we want to fit the model, the assumption E[X ] = 0p×1 is not restrictive since data can be
centered to get the model and translated to the original center at the end, if necessary. We demand m < p
because one of the objectives of factor analysis is explaining the initial variables in a simplified way with
a few common factors. The specific factors can be understood as the stochastic error terms in regression.
Condition (i) asks the common factors to be uncorrelated and have unit variance. Is in this sense that we
call the model orthogonal, considering the covariance as a scalar product. Conditions (ii) and (iii) ask the
specific factors to be uncorrelated one to each other and uncorrelated to the common factors. These last
two assumptions seem natural, in the sense that the common factors capture and explain a part of the
variability of each initial variable, letting the remaining amount to the specific factors.

To clarify notation, we will use ΣX as well as Cov(X ) to denote the covariance matrix of a random
vector X , depending on the situation, that is, ΣX = Cov(X ).

The next proposition is sometimes called The fundamental theorem of factor analysis and it shows us
a necessary condition for the model to have solution in the sense of Definition 2.1. Similar proofs as the
given below can be found in the literature, for example in Härdle and Simar ([2, p. 310]).

Proposition 2.2. Let X be a random vector with E[X ] = 0p×1 and E[X 2] <∞. If (Q, f , u) is a solution
to the orthogonal factor model for X , with Cov(u) = Ψ, then

ΣX = QQt + Ψ. (2)

Proof. Using basic properties of the covariance matrix and Definition 2.1, it is clear that

ΣX = Cov(X ) = Cov(Qf + u) = Cov(Qf ) + Cov(Qf , u) + Cov(u, Qf ) + Cov(u)

= QQt + Ψ.

1Let X t = (X1, ... ,Xp) be a p× 1 random vector. We say that E[X 2] <∞ if E[X 2
j ] <∞ for all j ∈ {1, ... , p}. We demand

E[X 2] <∞ to ensure existence of the covariances between the variables in X .
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The theorem of existence of solution we are interested in is the converse of the above proposition, and
it states that condition (2) is sufficient provided that Ψ is positive definite. The proof of this result seems
difficult to find in the existing literature. An original proof is given below, which uses some results on block
matrices and basic knowledge on linear algebra and probability.

Theorem 2.3 (Existence of solution to the orthogonal factor model). Let X be a p × 1 random vector
with E[X ] = 0p×1 and E[X 2] < ∞. Assume that there exist two matrices Q ∈ Mp×m(R), with m < p,
and Ψ ∈ Mp(R) diagonal and positive definite, such that ΣX = QQt + Ψ. Then, there exist two random
vectors f t = (f1, ... , fm) and ut = (u1, ... , up) satisfying the orthogonal factor model for X , with loadings
matrix Q and Cov(u) = Ψ.

Proof. Following the hint given in Mardia et al. ([5, p. 276]), we will show first that there exists a mul-
tivariate normal random vector Y t = (Y1, ... , Ym) with Y ∼ Nm(0m×1, Im + QtΨ−1Q), and then we will
show that the pair of random vectors defined by(

u
f

)
:=

(
Ip Q

−QtΨ−1 Im

)−1

︸ ︷︷ ︸
A−1

(
X
Y

)
(3)

are a solution to the orthogonal factor model.

Take W := Im+QtΨ−1Q, which is well defined since Ψ = diag(ψ1, ... ,ψp) with ψi > 0, ∀ i ∈ {1, ... , p}.
First of all, let’s see that W is symmetric and positive definite, and therefore we can consider a multivariate
normal vector Y with covariance matrix W .

Indeed, QtΨ−1Q and Im are symmetric and hence W is. Let v ∈ Mm×1(R) be any vector and take
y := Qv . We have v t QtΨ−1Qv = y tΨ−1y ≥ 0. Therefore v tWv = v tv + v t QtΨ−1Qv > 0 for any non
null v ∈ Mm×1(R), and W is positive definite.

Now, let’s see that the matrix A in (3) is invertible. A is a square matrix and Im is invertible, hence
Schur’s determinant formula (Schur, [6]) applies to obtain

det(A) = det

(
Ip Q

−QtΨ−1 Im

)
= det(Im) det(A/Im) = det(Ip + QQtΨ−1) = det(Ψ + QQt) det(Ψ−1),

where A/Im = Ip + QQtΨ−1 is the Schur complement of Im in A. Then, A is invertible if and only if
Ψ + QQt = ΣX is. As QQt is positive semidefinite and Ψ is positive definite, Ψ + QQt is positive definite,
so A is invertible.

After this technical details, we are ready to prove that the factors in (3) give a solution to the model.
Since A is invertible, we have:(

u
f

)
=

(
Ip Q

−QtΨ−1 Im

)−1(
X
Y

)
⇐⇒

(
X
Y

)
=

(
Ip Q

−QtΨ−1 Im

)
︸ ︷︷ ︸

A

(
u
f

)
.

Clearly, X = Qf + u, we must show that f and u satisfy conditions (i), (ii) and (iii) of Definition 2.1. To
see that (ii) holds observe that

E

(
u
f

)
= EA−1

(
X
Y

)
= A−1E

(
X
Y

)
= 0(p+m)×1
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thus E[u] = 0p×1 and E[f ] = 0m×1. Now, take M := Ip + QQtΨ−1 = A/Im. Since A and Im are invert-
ible, M is too by the Schur’s determinant formula and we can apply a Banachiewicz inversion formula
(Banachiewicz, [1]) to obtain the inverse

A−1 =

(
Ip Q

−QtΨ−1 Im

)−1

=

(
M−1 −M−1Q

QtΨ−1M−1 Im − QtΨ−1M−1Q

)
.

Thus, (
u
f

)
= A−1

(
X
Y

)
=

(
M−1 −M−1Q

QtΨ−1M−1 Im − QtΨ−1M−1Q

)(
X
Y

)
and therefore,

u = M−1(X − QY ). (4)

Now, Cov(u) = Cov(M−1(X − QY )) = M−1 Cov(X − QY )(M−1)t , and developing the covariance:

Cov(X − QY ) = Cov(X ) + Cov(X ,−QY ) + Cov(−QY , X ) + Cov(−QY )

= ΣX + QΣY Qt

= (Ψ + QQt) + Q(Im + QtΨ−1Q)Qt

= (Ip + QQtΨ−1)(Ψ + QQt)

= (Ip + QQtΨ−1)Ψ(Ip + Ψ−1QQt) = MΨMt .

Where we have used ΣX = QQt +Ψ by hypothesis, and Cov(X , Y ) = 0p×m since Y is taken independently
of X , hence Cov(u) = M−1MΨMt(Mt)−1 = Ψ and (ii) is proven.

Using similar arguments we will prove that Cov(f ) = Im. Provided that A and Ip are invertible we now
use another Banachiewicz inversion formula to get the following expression:

A−1 =

(
Ip Q

−QtΨ−1 Im

)−1

=

(
Ip − QW −1QtΨ−1 −QW −1

W −1QtΨ−1 W −1

)
,

where W = Im + QtΨ−1Q = A/Ip is the Schur complement of Ip in A. This way,(
u
f

)
= A−1

(
X
Y

)
=

(
Ip − QW −1QtΨ−1 −QW −1

W −1QtΨ−1 W −1

)(
X
Y

)
and we obtain

f = W −1(QtΨ−1X + Y ). (5)

Then, Cov(f ) = W −1 Cov(QtΨ−1X + Y )(W −1)t and using again that Cov(X , Y ) = 0p×m, it follows that

Cov(QtΨ−1X + Y ) = QtΨ−1ΣXΨ−1Q + ΣY

= QtΨ−1(QQt + Ψ)Ψ−1Q + W

= (QtΨ−1Q + Im)(QtΨ−1Q) + W

= W (QtΨ−1Q) + W

= W (QtΨ−1Q + Im) = WW .
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Therefore, using that W is symmetric, we have Cov(f ) = W −1WW (W −1)t = W −1WWW −1 = Im and
(i) holds.

Finally, let us see that (iii) holds, that is, Cov(u, f ) = 0p×m. Using the expressions (4) and (5) we
have:

Cov(u, f ) = Cov(M−1(X − QY ), W −1(QtΨ−1X + Y ))

= M−1 Cov(X − QY , QtΨ−1X + Y )(W −1)t

= M−1[Cov(X , X )Ψ−1Q − Q Cov(Y , Y )]W −1

= M−1[ΣXΨ−1Q − QΣY ]W −1,

but the term in square brackets is null, that is,

ΣXΨ−1Q − QΣY = (QQt + Ψ)Ψ−1Q − QW = Q(QtΨ−1Q + Im)− QW = QW − QW = 0p×m.

So Cov(u, f ) = 0p×m, and the proof is complete.

Under the hypotheses of Theorem 2.3 the existence of a solution holds, but the solution is not unique,
in fact, every orthogonal matrix provides another solution. Next proposition states this result (see Mardia
et al. for a proof, [5, pp. 257–258]).

Proposition 2.4. Let X be a random vector with E [X ] = 0p×1 and E [X 2] < ∞, let m < p and let
G ∈ Mm(R) be an orthogonal matrix, that is, G tG = GG t = Im. If (Q, f , u) is a solution to the orthogonal
m-factor model for X , then (QG , G t f , u) is a solution too.

In particular, the result holds when G ∈ Mm(R) is orthogonal and det(G ) = 1, that is, when G is a
rotation matrix in Rm.

Theorem 2.3 indicates how to proceed to adjust the model to a given observed vector X t = (X1, ... , Xp).

In practice we have a data matrix X̃ ∈ Mn×p(R), where each row of X̃ is an observation of X , and we

estimate ΣX by the sample covariance matrix S , then, our objective is to find matrices Q̂ ∈ Mp×m(R) and

Ψ̂ ∈ Mp(R), with Ψ̂ diagonal and positive definite, such that the equality

S = Q̂Q̂t + Ψ̂

holds, at least approximately. If we find such matrices Q̂ and Ψ̂, they can be taken as loadings and specific
variances estimates and so, they give rise to an estimated solution to the orthogonal factor model.

Estimates Q̂ and Ψ̂ are found using numerical methods currently implemented in statistical software
environments like R, being the Maximum Likelihood Estimation (MLE) and the least squares methods two
popular examples (Jöreskog, [3] and [4]). In exploratory factor analysis, the solution estimated by these
methods may not be useful enough for the researchers, in the sense that the factors may load on too many
variables and it could be difficult to interpret them. In this case, there exist methods (varimax, orthomax
and others) that aim to provide a rotation matrix G such that the rotated factors, given by Proposition 2.4,
may be more relevant for the ongoing investigation. From this point of view, the non uniqueness of solution
is not a drawback.
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3. The generalized factor model: existence of solu-
tion

The generalized factor model will allow correlations between the common factors, which is a less restrictive
and so more realistic assumption in many settings. We define:

Definition 3.1. Let X t = (X1, ... , Xp) be a p × 1 random vector with E[X ] = 0p×1 and E[X 2] <∞. We
say that the generalized factor model holds for X if there exist two random vectors f t = (f1, ... , fm) with
m < p and ut = (u1, ... , up) and a matrix Q = (qij)ij ∈ Mp×m(R), such that

X1 = q11f1 + q12f2 + · · ·+ q1mfm + u1

X2 = q21f1 + q22f2 + · · ·+ q2mfm + u2

...

Xp = qp1f1 + qp2f2 + · · ·+ qpmfm + up

and satisfying the following conditions:

(i) E[f ] = 0m×1, Cov(f ) = Θ, with Θ ∈ Mm(R) symmetric and positive semidefinite.

(ii) E[u] = 0p×1, Cov(u) = Ψ, with Ψ a diagonal matrix in Mp(R).

(iii) Cov(f , u) = 0m×p.

In this case we say that the triplet (Q, f , u) is a solution to the generalized factor model for X . The common
factors in f are also called “latent” or “hidden” factors for X .

Proposition 3.2. Let X be a random vector with E [X ] = 0p×1 and E[X 2] <∞. If (Q, f , u) is a solution
to the generalized factor model for X , with Cov(f ) = Θ and Cov(u) = Ψ, then

ΣX = QΘQt + Ψ. (6)

Proof.

ΣX = Cov(X ) = Cov(Qf + u) = Q Cov(f )Qt + Q Cov(f , u) + Cov(u, f )Qt + Cov(u)

= QΘQt + Ψ.

Therefore, the necessary condition for the model to have solution is now ΣX = QΘQt + Ψ, with
Q ∈ Mp×m(R), m < p, and Θ and Ψ covariance matrices, with the second being diagonal. This condition
is also sufficient as in the orthogonal case, if we ask Ψ to be positive definite. The result is given by the
next theorem, which is a corollary of Theorem 2.3.

Theorem 3.3 (Existence of solution to the generalized factor model). Let X be a p × 1 random vector
with E [X ] = 0p×1 and E[X 2] < ∞. Assume that there exist three matrices Q ∈ Mp×m(R), with m < p,
Ψ ∈ Mp(R), with Ψ diagonal and positive definite, and Θ ∈ Mm(R), with Θ symmetric and positive
semidefinite, such that ΣX = QΘQt + Ψ. Then, there exist two random vectors f t = (f1, ... , fm) and
ut = (u1, ... , up) satisfying the generalized factor model for X , with loadings matrix Q, with Cov(f ) = Θ
and Cov(u) = Ψ.
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Proof. Assume ΣX = QΘQt + Ψ, with Q ∈ Mp×m(R), Θ ∈ Mm(R) and Ψ ∈ Mp(R), with the stated
conditions. Since Θ is symmetric, we can consider its spectral decomposition Θ = V ΛV t . Then, Λ =
diag(λ1, ... ,λm) and since Θ is positive semidefinite λ1 ≥ · · · ≥ λm ≥ 0. Therefore, we can take Λ1/2 =
diag(

√
λ1, ... ,

√
λm) and write Θ = V Λ1/2Λ1/2V t . Now denote Q0 = QV Λ1/2, then:

ΣX = QΘQt + Ψ = QV Λ1/2Λ1/2V tQt + Ψ = Q0Qt
0 + Ψ.

Thus ΣX = Q0Qt
0 + Ψ, with Q0 ∈ Mp×m(R) and Ψ ∈ Mp(R), with Ψ diagonal and positive definite,

so we are on the hypotheses of Theorem 2.3. Hence, there exists two random vectors f0 = (f01, ... , f0m)t

and u0 = (u01, ... , u0p)t that satisfy the orthogonal factor model for X with loadings matrix Q0 and
Cov(u0) = Ψ, that is, satisfying X = Q0f0 + u0, Cov(u0) = Ψ, E[u0] = 0p×1, Cov(f0) = Im, E[f0] = 0m×1

and Cov(f0, u0) = 0m×p. Now, define the random vectors f := V Λ1/2f0 and u := u0, and let’s see that
these vectors give a solution to the generalized factor model for X with loadings matrix Q, Cov(f ) = Θ
and Cov(u) = Ψ. It holds:

X = Q0f0 + u0 = QV Λ1/2f0 + u0 = Qf + u

and it also holds:

Cov(u) = Cov(u0) = Ψ, E[u] = E[u0] = 0p×1,

Cov(f ) = Cov(V Λ1/2f0) = V Λ1/2 Cov(f0)(V Λ1/2)t = V Λ1/2ImΛ1/2V t = Θ,

E[f ] = E[V Λ1/2f0] = 0m×1, Cov(f , u) = Cov(V Λ1/2f0, u0) = 0m×p.

Thus, X = Qf + u with f and u satisfying the conditions in Definition 3.1 and the proof is complete.

In view of Theorem 3.3 and similarly to the orthogonal case, to fit the generalized factor model to a
data matrix X̃ , ΣX is replaced by the sample covariance matrix S and one tries to obtain parameters Q̂ ∈
Mp×m(R), with m < p, Θ̂ ∈ Mm(R), Θ̂ symmetric and positive semidefinite, and Ψ̂ ∈ Mp(R), Ψ̂ diagonal
and positive definite such that the equality

S = Q̂Θ̂Q̂t + Ψ̂

holds, at least approximately.

Factor models such as the one discussed in this section are used in confirmatory factor analysis. In this
technique the value of some parameters of the model is fixed in advance, and only the free parameters are
estimated. For example, it is common to fix some loadings to be zero. Values are fixed to obtain a solution
with a meaningful structure for the researcher. For this reason, if the prefixed model fits the observed data,
rotations may not be necessary, in contrast to the exploratory case. It is usual to perform an exploratory
analysis before the confirmatory one, in order to choose a model that is not in contradiction with the data,
but the exploratory and confirmatory procedures should be checked on different subsamples to honestly
confirm the model.

Expression of gratitude

I would like to thank Xavier Bardina, editor of Reports@SCM, for seeing an interest in sharing the proofs
given in this article, when I first exposed them in my final degree project. I would also like to thank Mercè
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